Near-infrared active metamaterials and their applications in tunable surface-enhanced Raman scattering.

نویسندگان

  • Xinglin Wen
  • Qing Zhang
  • Jianwei Chai
  • Lai Mun Wong
  • Shijie Wang
  • Qihua Xiong
چکیده

By utilizing the phase change properties of vanadium dioxide (VO2), we have demonstrated the tuning of the electric and magnetic modes of split ring resonators (SRRs) simultaneously within the near IR range. The electric resonance wavelength is blue-shift about 73 nm while the magnetic resonance mode is red-shifted about 126 nm during the phase transition from insulating to metallic phases. Due to the hysteresis phenomenon of VO2 phase transition, both the electric and magnetic modes shifts are hysteretic. In addition to the frequency shift, the magnetic mode has a trend to vanish due to the fact that the metallic phase VO2 has the tendency to short the gap of SRR. We have also demonstrated the application of this active metamaterials in tunable surface-enhanced Raman scattering (SERS), for a fixed excitation laser wavelength, the Raman intensity can be altered significantly by tuning the electric mode frequency of SRR, which is accomplished by controlling the phase of VO2 with an accurate temperature control.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface Enhanced Raman Scattering of Crystal Violet with Low Concentrations Using Self-Assembled Silver and Gold-Silver Core-Shell Nanoparticles

The active substrates in surface enhanced Raman scattering (SERS) spectroscopy were prepared through self-assembly of nanoparticles on functionalized glasses. Colloidal silver nanoparticles (Ag NPs) were prepared chemically in two different sizes by reduction of AgNO3 using trisodium citrate and sodium borohydride. Gold–silver core–shell nanoparticles were also prepared to compare between the o...

متن کامل

Localized surface plasmon enhanced photothermal conversion in Bi2Se3 topological insulator nanoflowers

Localized surface plasmons (LSP), the confined collective excitations of electrons in noble metal and doped semiconductor nanostructures, enhance greatly local electric field near the surface of the nanostructures and result in strong optical response. LSPs of ordinary massive electrons have been investigated for a long time and were used as basic ingredient of plasmonics and metamaterials. LSP...

متن کامل

Intelligent and ultrasensitive analysis of mercury trace contaminants via plasmonic metamaterial-based surface-enhanced Raman spectroscopy.

Label-free molecular logic gates (AND, INHIBIT, and OR) are constructed based on specific conformation modulation of a guanine- and thymine-rich DNA, while the optical readout is enabled by the tunable metamaterials which serve as a substrate for surface enhanced Raman spectroscopy. The DNA logic is simple to operate, highly reproducible, and can be stimulated by ultra-low concentration of the ...

متن کامل

Tunable surface-enhanced Raman scattering from large gold nanoparticle arrays.

Raman signal enhancements in excess of 10(7) can be achieved at near-infrared wavelengths when mid-nanometer sized gold particles self-organize into close-packed planar arrays. These substrates generate stable surface-enhanced Raman scattering which changes dramatically as a function of periodic structure and excitation wavelength.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 22 3  شماره 

صفحات  -

تاریخ انتشار 2014